Androgen Deprivation Followed by Acute Androgen Stimulation Selectively Sensitizes AR-Positive Prostate Cancer Cells to Ionizing Radiation.
نویسندگان
چکیده
PURPOSE The current standard of care for patients with locally advanced prostate cancer is a combination of androgen deprivation and radiation therapy. Radiation is typically given with androgen suppression when testosterone levels are at their nadir. Recent reports have shown that androgen stimulation of androgen-deprived prostate cancer cells leads to formation of double-strand breaks (DSB). Here, we exploit this finding and investigate the extent and timing of androgen-induced DSBs and their effect on tumor growth following androgen stimulation in combination with ionizing radiation (IR). EXPERIMENTAL DESIGN Androgen-induced DNA damage was assessed by comet assays and γH2A.X foci formation. Effects of androgen stimulation and radiation were determined in vitro and in vivo with xenograft models. RESULTS We document that androgen treatment of androgen-deprived prostate cancer cell lines resulted in a dose- and time-dependent induction of widespread DSBs. Generation of these breaks was dependent on androgen receptor and topoisomerase II beta but not on cell-cycle progression. In vitro models demonstrated a synergistic interaction between IR and androgen stimulation when IR is given at a time point corresponding with high levels of androgen-induced DSB formation. Furthermore, in vivo studies showed a significant improvement in tumor growth delay when radiation was given shortly after androgen repletion in castrated mice. CONCLUSIONS These results suggest a potential cooperative effect and improved tumor growth delay with androgen-induced DSBs and radiation with implications for improving the therapeutic index of prostate cancer radiation therapy. Clin Cancer Res; 22(13); 3310-9. ©2016 AACRSee related commentary by Chua and Bristow, p. 3124.
منابع مشابه
Androgen receptor signaling regulates DNA repair in prostate cancers.
UNLABELLED We demonstrate that the androgen receptor (AR) regulates a transcriptional program of DNA repair genes that promotes prostate cancer radioresistance, providing a potential mechanism by which androgen deprivation therapy synergizes with ionizing radiation. Using a model of castration-resistant prostate cancer, we show that second-generation antiandrogen therapy results in downregulati...
متن کاملAndrogen Receptor Upregulation Mediates Radioresistance after Ionizing Radiation.
Clinical trials have established the benefit of androgen deprivation therapy (ADT) combined with radiotherapy in prostate cancer. ADT sensitizes prostate cancer to radiotherapy-induced death at least in part through inhibition of DNA repair machinery, but for unknown reasons, adjuvant ADT provides further survival benefits. Here, we show that androgen receptor (AR) expression and activity are d...
متن کاملMitogenic action of the androgen receptor sensitizes prostate cancer cells to taxane-based cytotoxic insult.
Prostate cancer cells are dependent on androgen for growth and survival; as such, inhibition of androgen receptor (AR) activity is the first line of intervention for disseminated disease. Recently, specific cytotoxic agents have been shown to extend survival times in patients with advanced disease. Given the established ability of androgen to modify cell survival in prostate cancer cells, it is...
متن کاملAndrogen Receptor in Prostate Cancer Cells Inhibition of Androgen-Independent Activation of the A Transcription-Independent Function of FOXO1 in
Increasing evidence suggests that aberrant activation of the androgen receptor (AR) plays a pivotal role in the development and progression of androgen depletion–independent prostate cancer (PCa) after androgen deprivation therapy. Here, we show that loss of the PTEN tumor suppressor gene is associated with hyperactivation of the AR in human PCa cell lines. This effect is mediated primarily by ...
متن کاملProlonged androgen deprivation leads to downregulation of androgen receptor and prostate-specific membrane antigen in prostate cancer cells
Emergence of androgen-independent cancer cells during androgen deprivation therapy presents a significant challenge to successful treatment outcomes in prostate cancer. Elucidating the role of androgen deprivation in the transition from an androgen-dependent to an androgen-independent state may enable the development of more effective therapeutic ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Clinical cancer research : an official journal of the American Association for Cancer Research
دوره 22 13 شماره
صفحات -
تاریخ انتشار 2016